Optimal Control Model Pemanenan Prey-Predator di Area Konservasi Ikan

DOI:
https://doi.org/10.36456/buanamatematika.v10i1.2410
Keywords:
harvesting, model, optimal control, prey-predatorAbstract
The longer the fish population will decrease or experience extinction due to continuous fishing by humans. Conservation areas are needed as an effort to maintain the marine ecosystem and avoid extinction. The dynamics stability of the model can be seen from the equilibrium point. So that the application of mathematics can be used to make prey-predator population dynamics models and determine ways to optimize fish harvesting. The mathematical model is divided into three populations and in two different areas. To get maximum harvesting (E), use the Pontryagin Maximum Principle. So that the maximum benefit obtained when harvesting is 0.77 to 0.95.
Downloads
References
Afifah, Y. N. (2019). Analysis of Unsteady Magneto Hydro Dynamic ( MHD ) Nano Fluid Flow Past A Sliced Sphere Analysis of Unsteady Magneto Hydro Dynamic ( MHD ) Nano Fluid Flow Past A Sliced Sphere. IOP Conference Series: Materials Science and Engineering, 494, 012033. https://doi.org/10.1088/1757-899X/494/1/012033
Agus, S., Toaha, S., & Kasbawati, K. (2018). Analisis Model Populasi Mangsa Pemangsa dengan Area Reservasi dan Pemanenan Pemangsa. Jurnal Matematika Statistika Dan Komputasi, 15(1), 1. https://doi.org/10.20956/jmsk.v15i1.4418
Alaminya, M. M., Rohmah, N. A., Apriliani, E., Matematika, J., Matematika, F., Alam, P., & Sepuluh, I. T. (2013). Pengendalian Populasi Hama pada Model. 2(1), 1–6.
Angelis, G. Z. (2003). System analysis, modelling and control with polytopic linear models.
Daga, N., Singh, B., Jain, S., & Ujjainkar, G. (2014). Stability Analysis of a Prey-Predator Model with a Reserved Area. Advances in Applied Science Research, 5(3), 293–301
Das, K., Srinivas, M. N., Srinivas, M. A. S., & Gazi, N. H. (2012). Chaotic dynamics of a three species prey-predator competition model with bionomic harvesting due to delayed environmental noise as external driving force. Comptes Rendus - Biologies, 335(8), 503–513. https://doi.org/10.1016/j.crvi.2012.06.001
Didiharyono. (2016). Analisis Kestabilan dan Keuntungan Maksimum Model Predator-Prey Fungsi Respon Tipe Holling III dengan Usaha Pemanenan. Jurnal Masagena, 11(2), 314–326.
Ekawati Ningrum, R. (2019). Model Matematika Mangsa Pemangsa Dua Spesies Dengan Fungsi Respon Holling Tipe Ii Dan Perilaku Anti-Pemangsa. MATHunesa, 7(2), 114–121.
Lv, Y., Yuan, R., & Pei, Y. (2013). A prey-predator model with harvesting for fishery resource with reserve area. Applied Mathematical Modelling, 37(5), 3048–3062.
Marom, S. (2017). Pembentukan Model Mangsa Pemangsa dengan Pemanenan pada Pemangsa. Delta: Jurnal Ilmiah Pendidikan Matematika, 1(2), 181–187.
Pada, P., & Pemangsa, P. (2011). Kestabilan model bioekonomi sistem mangsa pemangsa sumber daya perikanan dengan pemanenan pada populasi pemangsa. 1–5.
Pradana, M. S., & Rohmah, A. M. (2018). Pemodelan Angka Pori Pada Stabilisasi Tanah Gambut. Buana Matematika : Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 8(2:), 59–64. https://doi.org/10.36456/buana_matematika.8.2:.1729.59-64
Putra, B. C., & Afifah, Y. N. (2018). Gaussian Mixture Model Untuk Penghitungan Tingkat. Teknika: Engineering and Sains Journal, 2, 53–58.
Putri, P. P. (2013). Analisis Solusi Numerik Model Predator-Prey Dengan Metode Runge-Kutta Orde Empat dan Gill.
Resmi, F. (2019). Kendali Optimal pada Sistem Prey Predator dengan Pemberian Makanan Alternatif pada Predator. Jurnal Mathematic Paedagogic, 4(1), 33. https://doi.org/10.36294/jmp.v4i1.762
Sukokarilinda, W. (2012). Analisis dan Kontrol Optimal pada Model Penyebaran Virus HIV dalam Tubuh Manusia. Universitas Airlangga, Surabaya.
Toaha, S., & Kasbawati. (2019). Optimal harvesting of prey-predator fishery modeling in a two patch environment and harvesting in unprotected area. IOP Conference Series: Earth and Environmental Science, 279(1). https://doi.org/10.1088/1755-1315/279/1/012014