Analisis Pola Harga Saham dengan Modifikasi Metode Eksponen Hurst dan Box Counting

 Abstract views: 105

Authors

  • Kosala Dwidja Purnomo Kosala Universitas Jember
  • Irma Dwi Anggraeni University of Jember
  • Abduh Riski Abduh Riski Universitas Jember

DOI:

https://doi.org/10.36456/buanamatematika.v13i2.7072

Keywords:

Stock price patterns, modified Hurst exponent method, box counting, fractal dimension

Abstract

A stock chart is a graphical representation of a stock's past performance. The dynamic pattern of stock prices is important to know because an investor wants to invest, expecting high returns with low risk. The dynamic pattern of stock prices can be known by fractal dimension analysis because the stock price graph is self-affine, which is one of the properties of fractal objects. In this study, a modification of the Hurst exponent method and box counting are used to analyze the fractal dimension. The calculated results are classified into three types, namely random, persistent and anti-persistent. Two data intervals are observed, namely January 2018-December 2021 stock prices (48 data) and January 2018-June 2022 stock prices (54 data). The resulting Hurst exponents of the two intervals are 0.043 and 0.003. Based on the resulting Hurst exponent value, the data is anti-persistent because the value 0<H<0.5. Then, the fractal dimension value obtained by applying the box-counting method is 1.547 and 1.562, meaning that Bank Rakyat Indonesia's price pattern is anti-persistent. The meaning of anti-persistent is that in certain months the stock has a high price and in the following months the stock has a low price to be traded.

Downloads

Download data is not yet available.

References

’Aini, L. N, dan Juniati, D. (2021). Dimensi Fraktal Eksponen Hurst. Jurnal Ilmiah Matematika. Vol 9 No. 2, hal: 390-395. DOI: https://doi.org/10.26740/mathunesa.v9n2.p390-398

Andriyani, R., Sampurno, J., Sanubary, I., Prof, J., dan Nawawi, H. (2018). Karakterisasi Iklim Kalimantan Barat Menggunakan Metode Eksponen Hurst dan Indeks Prediktabilitas Iklim. Prisma Fisika. Vol. 6 No. 01, hal: 9–14. DOI: https://doi.org/10.26418/pf.v6i1.23563

Arvita, Y. P., dan Muniarty, P. (2020). Analisis Harga Saham Pada PT Garuda Indonesia Tbk. Jurnal Manajemen Bisnis. Vol. 2 No. 1, hal: 27–35. DOI: https://doi.org/10.30812/target.v2i1.694

Barbulescu, A., Serban, C., Maftei, C., dan Bărbulescu, A. (2010). Statistical analysis and evaluation of Hurst coefficient for annual and monthly precipitation time series Numerical modelling of Micro-scale heat exchangers View project New Master’s Degree programmes (in English) in Romania View project Statistical analysis and evaluation of Hurst coefficient for annual and monthly precipitation time series. WSEEAS TRANSACTIONS on MATHEMATICS. Vol. 9 No. 10, hal: 791-800.

Brigham, E. F., dan Daves, P. R. (2018). Intermediate financial management. 13th

Ed. Amerika: South Western Educational Publishing.

Cahyani, N. N. M., dan Mahyuni, L. P. (2020). Akurasi Moving Average Dalam Prediksi Saham Lq45 di Bursa Efek Indonesia. E-Jurnal Manajemen Universitas Udayana. Vol. 9 No. 7, hal: 2769-2789. DOI: https://doi.org/10.24843/EJMUNUD.2020.v09.i07.p15

Hidayatillah, W., dan Jakfar, M. (2022). Klasifikasi Batik di Jawa Timur Berdasarkan Analisis Dimensi Fraktal dengan Menggunakan Metode Box Counting. Jurnal Ilmiah Matematika. Vol 10 No. 2, hal: 349-358. DOI: https://doi.org/10.26740/mathunesa.v10n2.p349-358

Iman, Nurhasanah, dan J. Sampurno. (2018). Analisis Fraktal untuk Identifikasi Kadar Gula Rambutan dengan Metode Box-Counting. PRISMA FISIKA. Vol. 6 No. 2, hal: 57–60. DOI: https://doi.org/10.26418/pf.v6i2.23912

Juwitarty, N. A., Dwidja Purnomo, K., dan Agung Santoso, K. (2020). Pendeteksian Citra Daun Tanaman Menggunakan Metode Box Counting (Detection of Leaf Image Using Box Counting Method). Majalah Ilmiah Matematika Dan Statistika. Vol. 20 No. 1, hal: 35–44. DOI: https://doi.org/10.19184/mims.v20i1.17221

Nazamuddin. (2020). Memahami Makroekonomi Melalui Data dan Fakta. Aceh: Syiah Kuala University Press. DOI: https://doi.org/10.52574/syiahkualauniversitypress.223

Prasetya, B. D., Pamungkas, F. S., dan Kharisudin, I. (2019). Pemodelan dan Peramalan Data Saham dengan Analisis Time Series menggunakan Python. PRISMA, Prosiding Seminar Nasional Matematika 3, hal: 714–718.

Putra, D. (2010). Pengolahan Citra Digital. Yogyakarta: C.V ANDI OFFSET.

Russ, J. C. (1994). Fractal Surfaces. 1st ed. New York: Plenum Press. DOI: https://doi.org/10.1007/978-1-4899-2578-7_1

Rohmatin, D. A. (2019). Modifikasi Metode Eksponen Hurst pada Kasus Data Curah Hujan. https://repository.unej.ac.id/handle/123456789/92914. [Diakses pada 3 September 2022].

Sequeira, J., Louçã, J., Mendes, A. M., & Lind, P. G. (2022). Using the Hurst Exponent and Entropy Measures to Predict Effective Transmissibility in Empirical Series of Malaria Incidence. Applied Sciences (Switzerland), 12(1). doi: 10.3390/app12010496 DOI: https://doi.org/10.3390/app12010496

Siska, E., Lestari, N. P., & Amalia, M. (2021). Satu Tahun Virus Corona: Analisis Pergerakan Harga Saham Bank Syariah di Lantai Bursa. Jurnal Ilmiah Ekonomi Islam. Vol 7 No. 3, hal: 1253–1260.

Zakaria, A. F. (2016). Penerapan Metode Eksponen Hurst dan Box Counting pada Kasus Curah Hujan. https://repository.unej.ac.id/handle/123456789/79396. [Diakses pada 31 Agustus 2022].

Published

31-12-2023

How to Cite

Kosala, K. D. P., Irma Dwi Anggraeni, & Abduh Riski, A. R. (2023). Analisis Pola Harga Saham dengan Modifikasi Metode Eksponen Hurst dan Box Counting. Buana Matematika : Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 13(2), 97–112. https://doi.org/10.36456/buanamatematika.v13i2.7072

Issue

Section

Artikel