Pemodelan Kejadian Balita Stunting di Kabupaten Bojonegoro dengan Metode Geographically Weighted Regression dan Multivariate Adaptive Regression Splines

DOI:
https://doi.org/10.36456/jstat.vol15.no1.a5074
Keywords:
Stunting Toddler, Bojonegoro, GWR, MARSAbstract
Toddler stunting is a chronic nutritional problem caused by one of which is inadequate nutritional intake in infants. Bojonegoro is a district in East Java province where the incidence of stunting under five is still common. In this study, we will compare the incidence of stunting under five in Bojonegoro district using GWR and MARS. GWR is able to model cases for each region spatially, while MARS is able to model cases without considering the pattern of relationships between predictor variables and response variables. The best GWR model selected the smallest CV and MSE values and the largest R-Square values. The best model of the Adaptive Bi-Square kernel function was obtained with a bandwidth of 28, the value of CV=2.4635, MSE=0.8620, and R-Square=0.8734. The best MARS model selected the smallest GCV value and the largest R-Square. From the combination of MO, BF and MI values, the best model was obtained at BF=24, MI=1 and MO=1 with GCV=1,29144 and R-Square=0,841 values. Comparing the two models, the MARS model is better because the R-Square value of the GWR model is greater than the MARS although the numerical value is not much different, while the MSE value of the MARS model is smaller than the MSE value of the GWR model with a much different difference. The results of this study will provide knowledge in the form of a regression model for the Bojonegoro district health office in predicting predictor variables that affect the incidence of stunting under five in Bojonegoro district.
Downloads
References
Bojonegoro, P. (2019). Profil Kesehatan Kabupaten Bojonegoro Tahun 2019. Kementrian Kesehatan, 141. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwixhdXVzsLuAhXeILcAHT-6DrUQFjAAegQIARAC&url=https%3A%2F%2Fwww.kemkes.go.id%2Fresources%2Fdownload%2Fprofil%2FPROFIL_KAB_KOTA_2019%2F3327_Jateng_Kab_Pemalang_2019.pdf&u
Gaussian, J. (2014). 1 , 2 , 3 1. 3, 253–262.
Kartal, M. T. (2020). Prediction on the volume of non-performing loans in Turkey using multivariate adaptive regression splines approach. June, 1–11. https://doi.org/10.1002/ijfe.2126 DOI: https://doi.org/10.1002/ijfe.2126
Kemenkes RI. (2018). Buletin Stunting. Kementerian Kesehatan RI, 301(5), 1163–1178.
Kesehatan, K., & Indonesia, R. (2019). Profil Kesehatan Indonesia Tahun 2019.
Muktamar Umakaapa. (2020). Strategi 2020 Melawan Stunting. https://news.detik.com/kolom/d-4858547/strategi-2020-melawan-stunting
Ningsih, W. A. (2017). Gambaran Kelengkapan Imunisasi Dasar Pada Balita Di Puskesmas Garuda Kota Bandung Tahun 2017. http://repository.bku.ac.id/xmlui/bitstream/handle/123456789/2418/WIDI ADZAN N CK115017%282018%29-1-47 NO ABSTARK.pdf?sequence=1&isAllowed=y
Putri, A., & Salamah, M. (2013). Pemodelan Kasus Balita Gizi Buruk di Geographically Weighted Regression. Jurnal Sains Dan Seni Pomits, 2(1), 106–111.
Studi, P., Iii, D., & Statistika, J. (2016). Pemodelan Prevalensi Penyakit Tuberkulosis ( Tb ) Beserta Faktor-Faktor Yang Berpengaruh Menggunakan Metode Geographically Weighted Regression Pemodelan Prevalensi Penyakit Tuberkulosis ( Tb ) Beserta Faktor-Faktor ( Studi Kasus Penyakit Tuberkulosis di K.
Supriyanto, D., & Ardiansah, D. A. (2019). Analisis pendapatan mudharabah muqayyadah dan non performing financing (npf) terhadap profitabilitas (roa). Journal Ilmu Manajemen Universitas Galuh Ciamis, 6, 367–374.
Widayani, Prima et al., 2016: 48. (2016). Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District. Indonesian Journal of Geography, 48(2). DOI: https://doi.org/10.22146/ijg.17601