Estimasi Interval Kredibel Distribusi Normal Terpotong Kiri pada Data Waktu Sembuh Pasien Covid-19

 Abstract views: 602

Authors

  • Putri Fardha Asa Oktavia Hans Universitas Airlangga
  • Ardi Kurniawan Universitas Airlangga
  • Sediono Universitas Airlangga
  • Elly Ana Universitas Airlangga
  • M. Fariz Fadillah Mardianto Universitas Airlangga

DOI:

https://doi.org/10.36456/jstat.vol15.no1.a5285

Keywords:

normal distribution, bayesian method, jeffrey’s prior, left truncated

Abstract

The Covid-19 pandemic has been declared a Public Health Emergency of International Concern. One of the government's efforts to get out of the epidemic is to conduct an analysis based on existing data. The purpose of this study was to estimate the credible interval of the left truncated normal distribution. The results of the estimated credible intervals obtained have an implicit form so that they are solved by using a numerical integral approach. The results of this study were applied to the recovery time of Covid-19 patients from the Jemursari Health Center Surabaya in the range of December 2020 to February 2021. Through left cutting, the parameter estimation process only uses data that is more than 10 days, so that 37 data is obtained from a total of 45 data. It was found that the average recovery time for left-cut Covid-19 patients was between 10.583 days to 11.087 days. Meanwhile, the variance of recovery time for Covid-19 patients is cut left between 1.706 days to 1.772 days.

Downloads

Download data is not yet available.

References

Agustino, L. (2020). Analisis Kebijkan Penanganan Wabah Covid-19:Pengalaman Indonesia. Jurnal Borneo Administrator, 16(2), 253-270. DOI: https://doi.org/10.24258/jba.v16i2.685

Box, G. & Tio, G. (1992). Bayesian Inference In Statistical Analysis. NewYork: John Wiley & Sons. DOI: https://doi.org/10.1002/9781118033197

Cha, J. (n.d.). Re-Estabilishing the Theoretical Foundations of a Truncated Normal Distribution: Standardization Statistical Inference, and Convolution. Clomson University.

Collet, D. (2003). Modelling Survival Data in Medical Research. USA: Chapman & Hall.

Harinaldi. (2005). Prinsip-Prinsip Statistika Untuk Teknik dan Sains. Jakarta: Erlangga.

Hidayat, N. (2009). Estimator Bayes Distribusi Eksponensial Terpotong Kiri Pada Data Uji Hidup Tersensor Tipe I Berdasarkan Non-informative prior. Skripsi. Universitas Airlangga.

Mutiarani, V. S. (2012). Estimasi Parameter Dan Interval Kredibel Dengan Model Regresi Linier Berganda Bayesian. Seminar Nasional Pendidikan Matematika Ahmad Dahlan. Yogyakarta.

Prahutama, A. S. (2012). Inferensi Statistik dari Distribusi Normal dengan Metode Bayes untuk Non-Informatif Prior. Media Statistika, 5(2), 95-104. DOI: https://doi.org/10.14710/medstat.5.2.95-104

Subanar. (2019). Inferensi Bayesian Dengan R. Yogyakarta: Gadjah Mada University Press.

Walpole, R. E. (2017). Probability & Statistics for Engineers & Scientist. United States: Ninth Edition, Pearson Education.

Downloads

Published

07/30/2022

How to Cite

Putri Fardha Asa Oktavia Hans, Ardi Kurniawan, Sediono, Elly Ana, & M. Fariz Fadillah Mardianto. (2022). Estimasi Interval Kredibel Distribusi Normal Terpotong Kiri pada Data Waktu Sembuh Pasien Covid-19 . J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 15(1). https://doi.org/10.36456/jstat.vol15.no1.a5285