Medoid-based Clustering pada Kecamatan di Kabupaten Lebak dan Pandeglang Provinsi Banten Berdasarkan Trilogi Ketahanan Pangan
DOI:
https://doi.org/10.36456/jstat.vol15.no1.a5468Keywords:
clustering, medoid, food security, distance, validationAbstract
Lebak and Pandeglang Regions in Banten Province have a high stunting prevalence of children under 5 years old and have the lowest value of food security index among regions in Banten Province. Cluster analysis to group districts in Lebak and Padeglang Regions is indispensable to characterize the district members in those two regions. The variables applied to calculate distance between districts in a simple k-medoid clustering were trilogy of food security namely the availability, access, and utility of the food from Bureau of Statistics of Lebak and Pandeglang Regions 2019 data. The distances were varied among Euclidean, squared Euclidean, and Manhattan distances. The clustering result was then validated via consensus clustering and internal validation. The suitable number of clusters was four defined as the available and access cluster (cluster 1), the access cluster (cluster 2), the vulnerable cluster (cluster 3), and the available cluster (cluster 4). The cluster 3 as the vulnerable cluster should be focused on because it consists of 38% from overall districts in Lebak and Banten Regions.
References
Balitbangkes. 2019. Laporan Provinsi Banten Riskesdas 2018/ Badan Penelitian dan Pengembangan Kesehatan. Jakarta : Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan.
BPS Lebak. 2019. Kabupaten Lebak dalam Angka. Lebak: Badan Pusat Statistik Kabupaten Lebak.
BPS Pandeglang. 2019. Kabupaten Pandeglang dalam Angka. Pandeglang: Badan Pusat Statistik Kabupaten Lebak.
Budiaji W. 2019. Medoid-based shadow value validation and visualization. International Journal of Advances in Intelligent Informatics Vol. 5 (2), pp 76-88 DOI: https://doi.org/10.26555/ijain.v5i2.326
Budiaji, Weksi, and Friedrich Leisch. 2019. Simple K-Medoids Partitioning Algorithm for Mixed Variable Data. Algorithms 12, no. 9: 177. https://doi.org/10.3390/a12090177 DOI: https://doi.org/10.3390/a12090177
Budiaji, W. 2021. kmed: distance-based k-medoids. R package version 0.4.0. https://cran.r-project.org/package=kmed
Dolnicar, S. and F. Leisch. 2014. Using graphical statistics to better understand market segmentation solutions. International Journal of Market Research 56, 207–230. DOI: https://doi.org/10.2501/IJMR-2013-073
FSC and WFP. 2015. Food Security and Vulnerability Atlas of Indonesia. Jakarta, Indonesia: FSC and WFP.
Leisch, F. 2006. A toolbox for K-centroids cluster analysis. Comput. Stat. Data Anal. 51, 526–544. [http://dx.doi.org/10.1016/j.csda.2005.10.006] DOI: https://doi.org/10.1016/j.csda.2005.10.006
Monti S, Tamayo P, Mesirov J, and Golub T. 2003. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach. Learn., vol. 52, pp. 91–118, doi: 10.1023/A:1023949509487. DOI: https://doi.org/10.1023/A:1023949509487
Murdoch, D & Adler D. 2021. rgl: 3D Visualization Using OpenGL. R package version 0.108.3. https://CRAN.R-project.org/package=rgl
R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2015, available at: https://www.r-project.org/
Rousseeuw, PJ. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., vol. 20, pp. 53–65 DOI: https://doi.org/10.1016/0377-0427(87)90125-7
Simatupang P. 2007. Analisis Kritis Terhadap Paradigma dan Kerangka Dasar Kebijakan Ketahanan Pangan Nasional. Forum Penelitian Agro Ekonomi Vol. 25 No.1 Hal: 1 –18 DOI: https://doi.org/10.21082/fae.v25n1.2007.1-18
Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; Steinbach M; Hand D; and Steinberg D. 2008. Top 10 algorithms in data mining. Knowl. Inf. Syst, 14, 1–37. [http://dx.doi.org/10.1007/s10115-007-0114-2] DOI: https://doi.org/10.1007/s10115-007-0114-2