Sentiment Analysis Of Public Opinion On Handling Stunting In Indonesia Using Random Forest

DOI:
https://doi.org/10.36456/jstat.vol17.no1.a9088
Keywords:
sentiment analyst, Random forest, StuntingAbstract
The problem of stunting is important to solve, as it has the potential to disrupt human resource potential and is linked to health outcomes and even child mortality. The Indonesian government targets the stunting rate to drop to 14 percent by 2024 through an accelerated stunting reduction program as an effort to improve the nutritional status of the community and also reduce the prevalence of stunting or short toddlers. Understanding public sentiment towards stunting initiatives is essential for policy makers and stakeholders to design effective interventions and allocate resources efficiently. In this research, classification of positive and negative sentiment is carried out using the random forest algorithm. The data used is comment data on one of the social media pages, namely Twitter, regarding public sentiment towards handling stunting cases in Indonesia. The first stage in this research after obtaining a data is data preprocessing. The data preprocessing stage in sentiment analysis is useful for cleaning and normalizing text, removing irrelevant words, and preparing data so that algorithms can analyze sentiment more accurately and efficiently. Furthermore, the results of the preprocessed data are labeled 0 for positive and 1 for negative labels. The classification of positive and negative sentiment was done using random forest and resulted in an accuracy value of 97.5%. This model is good, but we suggest trying other algorithms in future research.
Downloads
References
H. Rahman, M. Rahmah, and Nur Saribulan, “UPAYA PENANGANAN STUNTING DI INDONESIA,” Jurnal Ilmu Pemerintahan Suara Khatulistiwa (JIPSK), vol. VIII, no. 01, pp. 44–59, 2023.
W. H. S. W. H. Organization, “ Monitoring Health for the SDGs, World Health Organization,” 2022.
A. Muhaimin et al., “Social Media Analysis and Topic Modeling: Case Study of Stunting in Indonesia Analisis Sosial Media dan Pemodelan Topik: Kasus Studi Stunting di Indonesia,” Jurnal Informatika dan Teknologi Informasi, vol. 20, no. 3, pp. 406–415, 2023, doi: 10.31515/telematika.v20i3.10797.
R. Rizqi Robbi Arisandi, B. Warsito, and A. Rachman Hakim, “Aplikasi Naive Bayes Classifier (NBC) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation,” Jurnal Gaussian, vol. 11, no. 1, pp. 130–139, 2022, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/ DOI: https://doi.org/10.14710/j.gauss.v11i1.33991
U. R. Gurning, S. F. Octavia, D. R. Andriyani, N. Nurainun, and I. Permana, “Prediksi Risiko Stunting pada Keluarga Menggunakan Naïve Bayes Classifier dan Chi-Square,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 172–180, Jan. 2024, doi: 10.57152/malcom.v4i1.1074. DOI: https://doi.org/10.57152/malcom.v4i1.1074
A. A. Reza1 and M. S. Rohman2, “JITE (Journal of Informatics and Telecommunication Engineering) Prediction Stunting Analysis Using Random Forest Algorithm and Random Search Optimization,” JITE, vol. 7, no. 2, 2024, doi: 10.31289/jite.v7i2.10628. DOI: https://doi.org/10.31289/jite.v7i2.10628
A. Muhaimin et al., “Social Media Analysis and Topic Modeling: Case Study of Stunting in Indonesia Analisis Sosial Media dan Pemodelan Topik: Kasus Studi Stunting di Indonesia,” Jurnal Informatika dan Teknologi Informasi, vol. 20, no. 3, pp. 406–415, 2023, doi: 10.31515/telematika.v20i3.10797. DOI: https://doi.org/10.31315/telematika.v20i3.10797
M. Banurea, D. Betaria Hutagaol, and O. Sihombing, “KLASIFIKASI PENYAKIT STUNTING DENGAN MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE DAN RANDOM FOREST,” Jurnal TEKINKOM, vol. 6, no. 2, 2023, doi: 10.37600/tekinkom.v6i2.927.
J. A. Nursiyono and C. Chotimah, “Analisis Sentimen Netizen Twitter terhadap Pemberitaan PPN Sembako dan Jasa Pendidikan dengan Pendekatan Social Network Analysis dan Naive Bayes Classifier,” Jurnal Ilmiah Teori dan Aplikasi Statistika, vol. 14, pp. 52–58, 2021. DOI: https://doi.org/10.36456/jstat.vol14.no1.a3868
“Penerapan Text Mining pada Analisis Sentimen Pengguna Twitter Layanan Transportasi Online Menggunakan Metode Density Based Spatial Clustering of Applications With Noise (DBSCAN) dan K-Means,” Jurnal Ilmiah Teori dan Aplikasi Statistika, vol. 15, pp. 184–194, 2022. DOI: https://doi.org/10.36456/jstat.vol15.no1.a5983
Stephenie, B. Warsito, and A. Prahutama, “Sentiment Analysis on Tokopedia Product Online Reviews Using Random Forest Method,” in E3S Web of Conferences, EDP Sciences, Nov. 2020. doi: 10.1051/e3sconf/202020216006. DOI: https://doi.org/10.1051/e3sconf/202020216006
M. Ali Fauzi, A. Z. Arifin, S. C. Gosaria, and I. S. Prabowo, “Indonesian news classification using naïve bayes and two-phase feature selection model,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 8, no. 3, pp. 610–615, Dec. 2017, doi: 10.11591/ijeecs.v8.i3.pp610-615. DOI: https://doi.org/10.11591/ijeecs.v8.i3.pp610-615
Bahrawi, “Sentiment Analysis Using Random Forest Algorithm Online Social Media Based,” Makassar, Dec. 2019. DOI: https://doi.org/10.30818/jitu.2.2.2695
G. Khanvilkar and D. Vora, “Sentiment analysis for product recommendation using random forest,” International Journal of Engineering and Technology(UAE), vol. 7, no. 3, pp. 87–89, 2018, doi: 10.14419/ijet.v7i3.3.14492. DOI: https://doi.org/10.14419/ijet.v7i3.3.14492
L. Breiman, “Random Forests,” 2001.
Leo Breiman and A. Cutler, “ Manual on Setting Up, Using, and Understanding Random Forest 4.0,” 2003.
M. A. Fauzi, “Random forest approach fo sentiment analysis in Indonesian language,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 12, no. 1, pp. 46–50, Oct. 2018, doi: 10.11591/ijeecs.v12.i1.pp46-50. DOI: https://doi.org/10.11591/ijeecs.v12.i1.pp46-50
I. Afdhal et al., “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 1, 2022.