Autoregressive Integrated Moving Average (ARIMA) Simulation Methods In Product Inventory 9969B Printable Splicing Tape

 Abstract views: 106

Authors

  • Yitno Utomo Universitas PGRI Adi Buana Surabaya
  • Prihono
  • Muhamad Abdul Jumali Universitas PGRI Adi Buana Surabaya
  • Febrin Auliau Rohman Universitas PGRI Adi Buana Surabaya

DOI:

https://doi.org/10.36456/tibuana.7.2.9304.137-143

Keywords:

Inventory ; ARIMA ; Moving Average

Abstract

Simulation is applied to the 9969B Printable Splicing Tape product. The ARIMA (Autoregressive Integrated Moving Average) method, which is a method that is based on the values ​​of changes that have occurred in the past, is then used to determine historical data patterns. The aim of this research is to simulate forecasting inventory control needs for Printable Splicing Tape stock. The temporary ARIMA model is p = 8 (PACF dying down plot), d = 2 (one differencing), and q = 1. So, the temporary ARIMA model obtained is (8, 2, 1). The sales forecast for all Printable Splicing Tape products type 9969B on average per month during June-December 2023 is estimated that the average forecast for the company's Inventory Control must stock 608 rolls with a tracking error of -1 (e < 4) so ​​it is very permissible, because it is less than quaternion.

Downloads

Download data is not yet available.

References

S. S. ARUAN, “The PERBANDINGAN METODE ARIMA DAN SARIMA DALAM PERAMALAN PENJUALAN KELAPA,” JAMI J. Ahli Muda Indones., vol. 2, no. 2, pp. 79–90, 2021, doi: 10.46510/jami.v2i2.82. DOI: https://doi.org/10.46510/jami.v2i2.82

M. Thoriq Afris Suryono, R. Tania Aulia, E. Novtaputri, and R. Bakhtiar, “Forecasting Pendapatan UMKM: Strategi Tiga UMKM Unggulan di Kalurahan Hargorejo Dalam Kontribusi Terhadap Kalurahan Hargorejo, Kapanewon Kokap Kulon Progo Menggunakan Metode Arima,” SINOMIKA J. Publ. Ilm. Bid. Ekon. dan Akunt., vol. 2, no. 1, pp. 11–22, 2023, doi: 10.54443/sinomika.v2i1.906. DOI: https://doi.org/10.54443/sinomika.v2i1.906

E. N. S. Dewi and A. A. Chamid, “Implementation of Single Moving Average Methods For Sales Forecasting Of Bag In Convection Tas Loram Kulon,” J. Transform., vol. 16, no. 2, p. 113, 2019, doi: 10.26623/transformatika.v16i2.1047. DOI: https://doi.org/10.26623/transformatika.v16i2.1047

L. Sarifah, S. Kamilah, and S. Khotijah, “Penerapan Metode Single Moving Average Dalam Memprediksi Jumlah Penduduk Miskin Pada Perencanaan Pembangunan Daerah Kabupaten Pamekasan,” Zeta - Math J., vol. 8, no. 2, pp. 47–54, 2023, doi: 10.31102/zeta.2023.8.2.47-54. DOI: https://doi.org/10.31102/zeta.2023.8.2.47-54

L. M. Yahya, M. Adha, and D. Firmansyah, “Analisis Rantai Pasok (Supply Chain) Umkm Galamai Tek Tam Di Kota Payakumbuh,” Shar-E J. Kaji. Ekon. Huk. Syariah, vol. 9, no. 2, pp. 88–96, 2023, doi: 10.37567/shar-e.v9i2.2105. DOI: https://doi.org/10.37567/shar-e.v9i2.2105

D. Purnamasari, E. R. Arumi, and A. Primadewi, “Implementasi Metode Single Moving Average Untuk Prediksi Stok Produsen,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1495, 2022, doi: 10.30865/jurikom.v9i5.4946. DOI: https://doi.org/10.30865/jurikom.v9i5.4946

B. R. Pratama, erene zsa zsa Yusfara, A. Alifianto, erwin wahyu dwi Sakti, dava admirald Naufalian, and ranita sylfi Septyaningsih, “Penerapan Metode Forecasting Linear Trend Line Model Untuk Mengetahui Demand Real Market Pada Perusahaan Tas Ransel Nc Bagpack,” Jur. Tek. Ind. Fak. Teknol. Ind. Inst. Teknol. Adhi Tama Surabaya, no. Senastitan Iv, pp. 1–8, 2024.

T. E. Sari and W. Winarno, “Pemilihan Metode Peramalan yang Tepat Untuk Meramalkan Permintaan Piston Cup Forging di Perusahaan Spare-part Kendaraan,” J. Serambi Eng., vol. 8, no. 2, 2023, doi: 10.32672/jse.v8i2.5916. DOI: https://doi.org/10.32672/jse.v8i2.5916

R. Jumardi and S. H. Widiastuti, “Aplikasi Forecasting Penjualan Dan Persediaan Produk Usaha Mikro, Kecil Dan Menengah,” JSAI (Journal Sci. Appl. Informatics), vol. 4, no. 3, pp. 383–390, 2021, doi: 10.36085/jsai.v4i3.2756. DOI: https://doi.org/10.36085/jsai.v4i3.2756

M. Muhfiatun and M. Rudi Nugraha, “Penerapan Konsep Suply Chains Management Dalam Pengembangan Pola Distribusi Dan Wilayah Pemasaran Umkm Desa Krambilsawit,” J. Pemberdaya. Masy. Media Pemikir. dan Dakwah Pembang., vol. 2, no. 2, pp. 357–382, 2019, doi: 10.14421/jpm.2018.022-08. DOI: https://doi.org/10.14421/jpm.2018.022-08

W. S. Rahayu, P. T. Juwono, and W. Soetopo, “Analisis Prediksi Debit Sungai Amprong Dengan Model Arima (Autoregressive Integrated Moving Average) Sebagai Dasar Penyusunan Pola Tata Tanam,” J. Tek. Pengair., vol. 10, no. 2, pp. 110–119, 2019, doi: 10.21776/ub.pengairan.2019.010.02.04. DOI: https://doi.org/10.21776/ub.pengairan.2019.010.02.04

E. Sarwono, M. J. Shofa, and A. Kusumawati, “Analisis Perencanaan & Pengendalian Persediaan Bahan Baku Roti Pada UKM Produksi Roti,” J. Teknol. dan Manaj. Ind. Terap., vol. 1, no. 4, pp. 349–360, 2022, doi: 10.55826/tmit.v1i4.60. DOI: https://doi.org/10.55826/tmit.v1i4.60

Wulandari R.A and Gernowo R, “Metode Autoregressive Integrated Moving Average (ARIMA) dan Metode Adaptive Neuro Fuzzy Inference System (ANFIS) dalam Analisis Curah Hujan,” Berk. Fis., vol. 22, no. 1, pp. 41–48, 2019.

Downloads

Published

2024-07-28

How to Cite

Utomo, Y., Prihono, Muhamad Abdul Jumali, & Febrin Auliau Rohman. (2024). Autoregressive Integrated Moving Average (ARIMA) Simulation Methods In Product Inventory 9969B Printable Splicing Tape. Tibuana, 7(2), 137–143. https://doi.org/10.36456/tibuana.7.2.9304.137-143

Issue

Section

Article